control_modes.pde
Link to the code: control_modes.pde
This file contains funtions for reading the input modes and stablising the selected mode.
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
static void read_control_switch()
{
uint8_t switchPosition = readSwitch();
...
The first function is read_control_switch
. This function read the switch position.
// If switchPosition = 255 this indicates that the mode control channel input was out of range
// If we get this value we do not want to change modes.
if(switchPosition == 255) return;
if (hal.scheduler->millis() - failsafe.last_valid_rc_ms > 100) {
// only use signals that are less than 0.1s old.
return;
}
...
If the switch position is in the correct range there is a check done for the signals used.
// we look for changes in the switch position. If the
// RST_SWITCH_CH parameter is set, then it is a switch that can be
// used to force re-reading of the control switch. This is useful
// when returning to the previous mode after a failsafe or fence
// breach. This channel is best used on a momentary switch (such
// as a spring loaded trainer switch).
if (oldSwitchPosition != switchPosition ||
(g.reset_switch_chan != 0 &&
hal.rcin->read(g.reset_switch_chan-1) > RESET_SWITCH_CHAN_PWM)) {
set_mode((enum mode)modes[switchPosition].get());
oldSwitchPosition = switchPosition;
prev_WP = current_loc;
// reset speed integrator
g.pidSpeedThrottle.reset_I();
}
}
...
After all that, if the new position of the switch is different from the previous one the mode is changed through set_mode
function to the current position.Also the speed integrator is reset.
static uint8_t readSwitch(void){
uint16_t pulsewidth = hal.rcin->read(g.mode_channel - 1);
if (pulsewidth <= 900 || pulsewidth >= 2200) return 255; // This is an error condition
if (pulsewidth > 1230 && pulsewidth <= 1360) return 1;
if (pulsewidth > 1360 && pulsewidth <= 1490) return 2;
if (pulsewidth > 1490 && pulsewidth <= 1620) return 3;
if (pulsewidth > 1620 && pulsewidth <= 1749) return 4; // Software Manual
if (pulsewidth >= 1750) return 5; // Hardware Manual
return 0;
}
...
The readSwitch
function read the position of the switch using the pulsewidth
.
static void reset_control_switch()
{
oldSwitchPosition = 0;
read_control_switch();
}
...
This function reset the Switch position to 0.
#define CH_7_PWM_TRIGGER 1800
...
Defines the channel 7 for pwm input.
// read at 10 hz
// set this to your trainer switch
static void read_trim_switch()
{
switch ((enum ch7_option)g.ch7_option.get()) {
case CH7_DO_NOTHING:
break;
case CH7_SAVE_WP:
if (channel_learn->radio_in > CH_7_PWM_TRIGGER) {
// switch is engaged
ch7_flag = true;
} else { // switch is disengaged
if (ch7_flag) {
ch7_flag = false;
if (control_mode == MANUAL) {
hal.console->println_P(PSTR("Erasing waypoints"));
// if SW7 is ON in MANUAL = Erase the Flight Plan
mission.clear();
if (channel_steer->control_in > 3000) {
// if roll is full right store the current location as home
init_home();
}
return;
} else if (control_mode == LEARNING || control_mode == STEERING) {
// if SW7 is ON in LEARNING = record the Wp
// create new mission command
AP_Mission::Mission_Command cmd = {};
// set new waypoint to current location
cmd.content.location = current_loc;
// make the new command to a waypoint
cmd.id = MAV_CMD_NAV_WAYPOINT;
// save command
if(mission.add_cmd(cmd)) {
hal.console->printf_P(PSTR("Learning waypoint %u"), (unsigned)mission.num_commands());
}
} else if (control_mode == AUTO) {
// if SW7 is ON in AUTO = set to RTL
set_mode(RTL);
}
}
}
break;
}
}
...
This function reads for channel 7.If the option is CH7_SAVE_WP
some changes are done depending on the control_mode
If the mode is AUTO the mission is erased, and the wp is set as home.
If the mode is STEERING or learning the wp is current_loc
new value.