log.pde

The Log.pde file contains functions for writing and reading packets from DataFlash log memory.Also, allows the user to dump or erase logs.

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-

#if LOGGING_ENABLED == ENABLED

// Code to Write and Read packets from DataFlash log memory
// Code to interact with the user to dump or erase logs
...

Check if LOGGING_ENABLEis already working.

// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t    dump_log(uint8_t argc,             const Menu::arg *argv);
static int8_t    erase_logs(uint8_t argc,         const Menu::arg *argv);
static int8_t    select_logs(uint8_t argc,         const Menu::arg *argv);
...

Here you can find dump_log, erase_logand select_logs functions definitions.They are defined here to let the Menu be constructed.

 // Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Common for implementation details
static const struct Menu::command log_menu_commands[] PROGMEM = {
    {"dump",    dump_log},
    {"erase",    erase_logs},
    {"enable",    select_logs},
    {"disable",    select_logs}
};
...

Here the menu is created as a array of structs.The strings between quotes represent the options in the menu.In AP_Common library you will find more about menu class.

// A Macro to create the Menu
MENU2(log_menu, "Log", log_menu_commands, print_log_menu);

static bool
print_log_menu(void)
{
    cliSerial->printf_P(PSTR("logs enabled: "));

    if (0 == g.log_bitmask) {
        cliSerial->printf_P(PSTR("none"));
    }else{
        // Macro to make the following code a bit easier on the eye.
        // Pass it the capitalised name of the log option, as defined
        // in defines.h but without the LOG_ prefix.  It will check for
        // the bit being set and print the name of the log option to suit.
        #define PLOG(_s)    if (g.log_bitmask & MASK_LOG_ ## _s) cliSerial->printf_P(PSTR(" %S"), PSTR(#_s))
        PLOG(ATTITUDE_FAST);
        PLOG(ATTITUDE_MED);
        PLOG(GPS);
        PLOG(PM);
        PLOG(CTUN);
        PLOG(NTUN);
        PLOG(MODE);
        PLOG(IMU);
        PLOG(CMD);
        PLOG(CURRENT);
        PLOG(SONAR);
        PLOG(COMPASS);
        PLOG(CAMERA);
        PLOG(STEERING);
        #undef PLOG
    }

    cliSerial->println();

    DataFlash.ListAvailableLogs(cliSerial);
    return(true);
}
...

This slice of code creates a macro for the menu.A macro (short for "macroinstruction") is a rule or pattern that specifies how a certain input sequence (often a sequence of characters) should be mapped to a replacement output sequence (also often a sequence of characters) according to a defined procedure.


static int8_t
dump_log(uint8_t argc, const Menu::arg *argv)
{
    int16_t dump_log;
    uint16_t dump_log_start;
    uint16_t dump_log_end;
    uint16_t last_log_num;

    // check that the requested log number can be read
    dump_log = argv[1].i;
    last_log_num = DataFlash.find_last_log();

    if (dump_log == -2) {
        DataFlash.DumpPageInfo(cliSerial);
        return(-1);
    } else if (dump_log <= 0) {
        cliSerial->printf_P(PSTR("dumping all\n"));
        Log_Read(0, 1, 0);
        return(-1);
    } else if ((argc != 2)
               || ((uint16_t)dump_log > last_log_num))
    {
        cliSerial->printf_P(PSTR("bad log number\n"));
        return(-1);
    }

    DataFlash.get_log_boundaries(dump_log, dump_log_start, dump_log_end);
    Log_Read((uint16_t)dump_log, dump_log_start, dump_log_end);
    return 0;
}

This slice of code checks if the value of dump_log=argc[1] is equal to -2, in that case dumps the information in the page; if not checks if the value is under 0. When the value is under 0, reads each log. Lastly, check if argc is not 2 or the dump_logvariable value is greater than the _last_log_num for printing a error message.

static void do_erase_logs(void)
{
    cliSerial->printf_P(PSTR("\nErasing log...\n"));
    DataFlash.EraseAll();
    cliSerial->printf_P(PSTR("\nLog erased.\n"));
}

This function call EraseAll()funtion defined in Dataflash module, for deleting the logs.

static int8_t
erase_logs(uint8_t argc, const Menu::arg *argv)
{
    in_mavlink_delay = true;
    do_erase_logs();
    in_mavlink_delay = false;
    return 0;
}
...

This funtion calls the previously defined function do_erase_logsin case the mavlink messages are dalayed (in_mavlink_delay value is true).

static int8_t
select_logs(uint8_t argc, const Menu::arg *argv)
{
    uint16_t    bits;

    if (argc != 2) {
        cliSerial->printf_P(PSTR("missing log type\n"));
        return(-1);
    }

    bits = 0;

    // Macro to make the following code a bit easier on the eye.
    // Pass it the capitalised name of the log option, as defined
    // in defines.h but without the LOG_ prefix.  It will check for
    // that name as the argument to the command, and set the bit in
    // bits accordingly.
    //
    if (!strcasecmp_P(argv[1].str, PSTR("all"))) {
        bits = ~0;
    } else {
        #define TARG(_s)    if (!strcasecmp_P(argv[1].str, PSTR(#_s))) bits |= MASK_LOG_ ## _s
        TARG(ATTITUDE_FAST);
        TARG(ATTITUDE_MED);
        TARG(GPS);
        TARG(PM);
        TARG(CTUN);
        TARG(NTUN);
        TARG(MODE);
        TARG(IMU);
        TARG(CMD);
        TARG(CURRENT);
        TARG(SONAR);
        TARG(COMPASS);
        TARG(CAMERA);
        TARG(STEERING);
        #undef TARG
    }

    if (!strcasecmp_P(argv[0].str, PSTR("enable"))) {
        g.log_bitmask.set_and_save(g.log_bitmask | bits);
    }else{
        g.log_bitmask.set_and_save(g.log_bitmask & ~bits);
    }
    return(0);
}
...

This function first check if the value of argc isdifferent from 2, in that case prints a missing log type.After that calls the macro defined above. Then checks if PSTR is enabled and in that case set and save the logs.


process_logs(uint8_t argc, const Menu::arg *argv)
{
    log_menu.run();
    return 0;
}
...

process_logs funtion runs the menu defined above.

struct PACKED log_Performance {
    LOG_PACKET_HEADER;
    uint32_t time_ms;
    uint32_t loop_time;
    uint16_t main_loop_count;
    uint32_t g_dt_max;
    int16_t  gyro_drift_x;
    int16_t  gyro_drift_y;
    int16_t  gyro_drift_z;
    uint8_t  i2c_lockup_count;
    uint16_t ins_error_count;
};
...

This struct contains definitions of variables that will be used when working with logs.

// Write a performance monitoring packet. Total length : 19 bytes
static void Log_Write_Performance()
{
    struct log_Performance pkt = {
        LOG_PACKET_HEADER_INIT(LOG_PERFORMANCE_MSG),
        time_ms         : millis(),
        loop_time       : millis()- perf_mon_timer,
        main_loop_count : mainLoop_count,
        g_dt_max        : G_Dt_max,
        gyro_drift_x    : (int16_t)(ahrs.get_gyro_drift().x * 1000),
        gyro_drift_y    : (int16_t)(ahrs.get_gyro_drift().y * 1000),
        gyro_drift_z    : (int16_t)(ahrs.get_gyro_drift().z * 1000),
        i2c_lockup_count: hal.i2c->lockup_count(),
        ins_error_count  : ins.error_count()
    };
    DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
...

The function Log_Write_Performance()contains the implementations of the Log_Performance struct defined above.For example the function time_ms should call another function millis which change units from micro to mili seconds(As comented in other sections).


// Write a mission command. Total length : 36 bytes
static void Log_Write_Cmd(const AP_Mission::Mission_Command &cmd)
{
    mavlink_mission_item_t mav_cmd = {};
    AP_Mission::mission_cmd_to_mavlink(cmd,mav_cmd);
    DataFlash.Log_Write_MavCmd(mission.num_commands(),mav_cmd);
}
...

This functions defines a AP_Mission Class function and after that writes the logs using Dataflah function Log_Write_MavCMd, defines as: void Log_Write_MavCmd(uint16_t cmd_total, const mavlink_mission_item_t& mav_cmd);

struct PACKED log_Steering {
    LOG_PACKET_HEADER;
    uint32_t time_ms;
    float demanded_accel;
    float achieved_accel;
};
...

Here Log_Steering struct is defined.

// Write a steering packet
static void Log_Write_Steering()
{
    struct log_Steering pkt = {
        LOG_PACKET_HEADER_INIT(LOG_STEERING_MSG),
        time_ms        : hal.scheduler->millis(),
        demanded_accel : lateral_acceleration,
        achieved_accel : gps.ground_speed() * ins.get_gyro().z,
    };
    DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
...

This slice of code, first defines a packet called Log_Steering containing implementations of functions. Then calls WriteBlock Datafhash function for writing the info in the packet.


struct PACKED log_Startup {
    LOG_PACKET_HEADER;
    uint32_t time_ms;
    uint8_t startup_type;
    uint16_t command_total;
};
...

Log_Startup struc is defined here.This struc will be use in the next function implementation.

static void Log_Write_Startup(uint8_t type)
{
    struct log_Startup pkt = {
        LOG_PACKET_HEADER_INIT(LOG_STARTUP_MSG),
        time_ms         : millis(),
        startup_type    : type,
        command_total   : mission.num_commands()
    };
    DataFlash.WriteBlock(&pkt, sizeof(pkt));

    // write all commands to the dataflash as well
    AP_Mission::Mission_Command cmd;
    for (uint16_t i = 0; i < mission.num_commands(); i++) {
        if(mission.read_cmd_from_storage(i,cmd)) {
            Log_Write_Cmd(cmd);
        }
    }
}
...

Log_Write_Startup packet is implemented and `WriteBlock stores the data, in the same way as int he previous function. After this all the miision commands are copied to the dataflash.The process is simply: while i is under the mission commands number, read from storage the command and write it on the dataflash.


struct PACKED log_Control_Tuning {
    LOG_PACKET_HEADER;
    uint32_t time_ms;
    int16_t steer_out;
    int16_t roll;
    int16_t pitch;
    int16_t throttle_out;
    float accel_y;
};
...

Here the log_control_Tuning struct is defined.

// Write a control tuning packet. Total length : 22 bytes
static void Log_Write_Control_Tuning()
{
    Vector3f accel = ins.get_accel();
    struct log_Control_Tuning pkt = {
        LOG_PACKET_HEADER_INIT(LOG_CTUN_MSG),
        time_ms         : millis(),
        steer_out       : (int16_t)channel_steer->servo_out,
        roll            : (int16_t)ahrs.roll_sensor,
        pitch           : (int16_t)ahrs.pitch_sensor,
        throttle_out    : (int16_t)channel_throttle->servo_out,
        accel_y         : accel.y
    };
    DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
...

After definingthe log_control_Tuningstruct he fuction defined above write one of those packets.

struct PACKED log_Nav_Tuning {
    LOG_PACKET_HEADER;
    uint32_t time_ms;
    uint16_t yaw;
    float    wp_distance;
    uint16_t target_bearing_cd;
    uint16_t nav_bearing_cd;
    int8_t   throttle;
};
...

The log_Nav_Tuningstruct is defined. This struct contains variables for synchronizing the position, distances... when using AP_Navigation functions.


// Write a navigation tuning packet. Total length : 18 bytes
static void Log_Write_Nav_Tuning()
{
    struct log_Nav_Tuning pkt = {
        LOG_PACKET_HEADER_INIT(LOG_NTUN_MSG),
        time_ms             : millis(),
        yaw                 : (uint16_t)ahrs.yaw_sensor,
        wp_distance         : wp_distance,
        target_bearing_cd   : (uint16_t)nav_controller->target_bearing_cd(),
        nav_bearing_cd      : (uint16_t)nav_controller->nav_bearing_cd(),
        throttle            : (int8_t)(100 * channel_throttle->norm_output())
    };
    DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
...

The funtion Log_Nav_Tuningwrites a packet as defined above.

struct PACKED log_Attitude {
    LOG_PACKET_HEADER;
    uint32_t time_ms;
    int16_t roll;
    int16_t pitch;
    uint16_t yaw;
};


// Write an attitude packet
static void Log_Write_Attitude()
{
    struct log_Attitude pkt = {
        LOG_PACKET_HEADER_INIT(LOG_ATTITUDE_MSG),
        time_ms : millis(),
        roll    : (int16_t)ahrs.roll_sensor,
        pitch   : (int16_t)ahrs.pitch_sensor,
        yaw     : (uint16_t)ahrs.yaw_sensor
    };
    DataFlash.WriteBlock(&pkt, sizeof(pkt));
#if AP_AHRS_NAVEKF_AVAILABLE
    DataFlash.Log_Write_EKF(ahrs);
    DataFlash.Log_Write_AHRS2(ahrs);
#endif
}

struct PACKED log_Mode {
    LOG_PACKET_HEADER;
    uint32_t time_ms;
    uint8_t mode;
    uint8_t mode_num;
};

// Write a mode packet
static void Log_Write_Mode()
{
    struct log_Mode pkt = {
        LOG_PACKET_HEADER_INIT(LOG_MODE_MSG),
        time_ms         : millis(),
        mode            : (uint8_t)control_mode,
        mode_num        : (uint8_t)control_mode
    };
    DataFlash.WriteBlock(&pkt, sizeof(pkt));
}


struct PACKED log_Sonar {
    LOG_PACKET_HEADER;
    uint32_t time_ms;
    float    lateral_accel;
    uint16_t sonar1_distance;
    uint16_t sonar2_distance;
    uint16_t detected_count;
    int8_t   turn_angle;
    uint16_t turn_time;
    uint16_t ground_speed;
    int8_t   throttle;
};

// Write a sonar packet
static void Log_Write_Sonar()
{
    uint16_t turn_time = 0;
    if (obstacle.turn_angle != 0) {
        turn_time = hal.scheduler->millis() - obstacle.detected_time_ms;
    }
    struct log_Sonar pkt = {
        LOG_PACKET_HEADER_INIT(LOG_SONAR_MSG),
        time_ms         : millis(),
        lateral_accel   : lateral_acceleration,
        sonar1_distance : (uint16_t)sonar.distance_cm(0),
        sonar2_distance : (uint16_t)sonar.distance_cm(1),
        detected_count  : obstacle.detected_count,
        turn_angle      : (int8_t)obstacle.turn_angle,
        turn_time       : turn_time,
        ground_speed    : (uint16_t)(ground_speed*100),
        throttle        : (int8_t)(100 * channel_throttle->norm_output())
    };
    DataFlash.WriteBlock(&pkt, sizeof(pkt));
}

struct PACKED log_Current {
    LOG_PACKET_HEADER;
    uint32_t time_ms;
    int16_t throttle_in;
    int16_t battery_voltage;
    int16_t current_amps;
    uint16_t board_voltage;
    float   current_total;
};

static void Log_Write_Current()
{
    struct log_Current pkt = {
        LOG_PACKET_HEADER_INIT(LOG_CURRENT_MSG),
        time_ms                 : millis(),
        throttle_in             : channel_throttle->control_in,
        battery_voltage         : (int16_t)(battery.voltage() * 100.0),
        current_amps            : (int16_t)(battery.current_amps() * 100.0),
        board_voltage           : (uint16_t)(hal.analogin->board_voltage()*1000),
        current_total           : battery.current_total_mah()
    };
    DataFlash.WriteBlock(&pkt, sizeof(pkt));

    // also write power status
    DataFlash.Log_Write_Power();
}

struct PACKED log_Compass {
    LOG_PACKET_HEADER;
    uint32_t time_ms;
    int16_t mag_x;
    int16_t mag_y;
    int16_t mag_z;
    int16_t offset_x;
    int16_t offset_y;
    int16_t offset_z;
    int16_t motor_offset_x;
    int16_t motor_offset_y;
    int16_t motor_offset_z;
};

// Write a Compass packet. Total length : 15 bytes
static void Log_Write_Compass()
{
    const Vector3f &mag_offsets = compass.get_offsets();
    const Vector3f &mag_motor_offsets = compass.get_motor_offsets();
    const Vector3f &mag = compass.get_field();
    struct log_Compass pkt = {
        LOG_PACKET_HEADER_INIT(LOG_COMPASS_MSG),
        time_ms         : millis(),
        mag_x           : (int16_t)mag.x,
        mag_y           : (int16_t)mag.y,
        mag_z           : (int16_t)mag.z,
        offset_x        : (int16_t)mag_offsets.x,
        offset_y        : (int16_t)mag_offsets.y,
        offset_z        : (int16_t)mag_offsets.z,
        motor_offset_x  : (int16_t)mag_motor_offsets.x,
        motor_offset_y  : (int16_t)mag_motor_offsets.y,
        motor_offset_z  : (int16_t)mag_motor_offsets.z
    };
    DataFlash.WriteBlock(&pkt, sizeof(pkt));
#if COMPASS_MAX_INSTANCES > 1
    if (compass.get_count() > 1) {
        const Vector3f &mag2_offsets = compass.get_offsets(1);
        const Vector3f &mag2_motor_offsets = compass.get_motor_offsets(1);
        const Vector3f &mag2 = compass.get_field(1);
        struct log_Compass pkt2 = {
            LOG_PACKET_HEADER_INIT(LOG_COMPASS2_MSG),
            time_ms         : millis(),
            mag_x           : (int16_t)mag2.x,
            mag_y           : (int16_t)mag2.y,
            mag_z           : (int16_t)mag2.z,
            offset_x        : (int16_t)mag2_offsets.x,
            offset_y        : (int16_t)mag2_offsets.y,
            offset_z        : (int16_t)mag2_offsets.z,
            motor_offset_x  : (int16_t)mag2_motor_offsets.x,
            motor_offset_y  : (int16_t)mag2_motor_offsets.y,
            motor_offset_z  : (int16_t)mag2_motor_offsets.z
        };
        DataFlash.WriteBlock(&pkt2, sizeof(pkt2));
    }
#endif
#if COMPASS_MAX_INSTANCES > 2
    if (compass.get_count() > 2) {
        const Vector3f &mag3_offsets = compass.get_offsets(2);
        const Vector3f &mag3_motor_offsets = compass.get_motor_offsets(2);
        const Vector3f &mag3 = compass.get_field(2);
        struct log_Compass pkt3 = {
            LOG_PACKET_HEADER_INIT(LOG_COMPASS3_MSG),
            time_ms         : millis(),
            mag_x           : (int16_t)mag3.x,
            mag_y           : (int16_t)mag3.y,
            mag_z           : (int16_t)mag3.z,
            offset_x        : (int16_t)mag3_offsets.x,
            offset_y        : (int16_t)mag3_offsets.y,
            offset_z        : (int16_t)mag3_offsets.z,
            motor_offset_x  : (int16_t)mag3_motor_offsets.x,
            motor_offset_y  : (int16_t)mag3_motor_offsets.y,
            motor_offset_z  : (int16_t)mag3_motor_offsets.z
        };
        DataFlash.WriteBlock(&pkt3, sizeof(pkt3));
    }
#endif
}
...

In the same way as defined in previous functios here, a struct is defined: log_Mode,Log_Sonar... After the definition there is a function:Log_Write_Mode(), Log_Write_Sonarthat writes a packet using corresponding defined struct.For example: In the Log_Write_Compassall compass data values are full-filled with the info from the packet log_Compass; for more infro you can go to AP_Compass and see the meaning of the variables there.


static void Log_Write_RC(void)
{
    DataFlash.Log_Write_RCIN();
    DataFlash.Log_Write_RCOUT();
}
...

This funtion calls Log_Write_RCINand Log_Write_RCoutfunctions defined in DataFLash module. These two functions writes the RC Input/Output data on the datdflash.


static void Log_Write_Baro(void)
{
    DataFlash.Log_Write_Baro(barometer);
}

...

The same as the previus function, but with the barometer data.


static const struct LogStructure log_structure[] PROGMEM = {
    LOG_COMMON_STRUCTURES,
    { LOG_ATTITUDE_MSG, sizeof(log_Attitude),
      "ATT", "IccC",        "TimeMS,Roll,Pitch,Yaw" },
    { LOG_PERFORMANCE_MSG, sizeof(log_Performance),
      "PM",  "IIHIhhhBH", "TimeMS,LTime,MLC,gDt,GDx,GDy,GDz,I2CErr,INSErr" },
    { LOG_STARTUP_MSG, sizeof(log_Startup),
      "STRT", "IBH",        "TimeMS,SType,CTot" },
    { LOG_CTUN_MSG, sizeof(log_Control_Tuning),
      "CTUN", "Ihcchf",     "TimeMS,Steer,Roll,Pitch,ThrOut,AccY" },
    { LOG_NTUN_MSG, sizeof(log_Nav_Tuning),
      "NTUN", "IHfHHb",     "TimeMS,Yaw,WpDist,TargBrg,NavBrg,Thr" },
    { LOG_SONAR_MSG, sizeof(log_Sonar),
      "SONR", "IfHHHbHCb",  "TimeMS,LatAcc,S1Dist,S2Dist,DCnt,TAng,TTim,Spd,Thr" },
    { LOG_CURRENT_MSG, sizeof(log_Current),
      "CURR", "IhhhHf",     "TimeMS,Thr,Volt,Curr,Vcc,CurrTot" },
    { LOG_MODE_MSG, sizeof(log_Mode),
      "MODE", "IMB",        "TimeMS,Mode,ModeNum" },
    { LOG_COMPASS_MSG, sizeof(log_Compass),
      "MAG", "Ihhhhhhhhh",  "TimeMS,MagX,MagY,MagZ,OfsX,OfsY,OfsZ,MOfsX,MOfsY,MOfsZ" },
    { LOG_COMPASS2_MSG, sizeof(log_Compass),
      "MAG2", "Ihhhhhhhhh",   "TimeMS,MagX,MagY,MagZ,OfsX,OfsY,OfsZ,MOfsX,MOfsY,MOfsZ" },
    { LOG_STEERING_MSG, sizeof(log_Steering),
      "STER", "Iff",   "TimeMS,Demanded,Achieved" },
};

Here you can find a struct defining arrays, which containg the LOG_MSGvalues for each class of log-message.

// Read the DataFlash log memory : Packet Parser
static void Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page)
{
    cliSerial->printf_P(PSTR("\n" FIRMWARE_STRING
                             "\nFree RAM: %u\n"),
                        (unsigned)hal.util->available_memory());

    cliSerial->println_P(PSTR(HAL_BOARD_NAME));

    DataFlash.LogReadProcess(log_num, start_page, end_page,
                             print_mode,
                             cliSerial);
}
...

Here there is the implemtation of the function that reads logs from the datdflash memory.

// start a new log
static void start_logging()
{
    in_mavlink_delay = true;
    DataFlash.StartNewLog();
    in_mavlink_delay = false;
    DataFlash.Log_Write_Message_P(PSTR(FIRMWARE_STRING));

#if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION)
    DataFlash.Log_Write_Message_P(PSTR("PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION));
#endif

    // write system identifier as well if available
    char sysid[40];
    if (hal.util->get_system_id(sysid)) {
        DataFlash.Log_Write_Message(sysid);
    }
}

#else // LOGGING_ENABLED

...

This funtion starts a new log. Open a new log in dataflash with StartNewLog and then writes the log message using Log_Write_Message.If PX4 and NUYYX are available then writes the version. Finally, also write the id from the system.

// dummy functions
static void Log_Write_Startup(uint8_t type) {}
static void Log_Write_Current() {}
static void Log_Write_Nav_Tuning() {}
static void Log_Write_Performance() {}
static void Log_Write_Cmd(const AP_Mission::Mission_Command &cmd) {}
static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { return 0; }
static void Log_Write_Control_Tuning() {}
static void Log_Write_Sonar() {}
static void Log_Write_Mode() {}
static void Log_Write_Attitude() {}
static void Log_Write_Compass() {}
static void start_logging() {}
static void Log_Write_RC(void) {}

#endif // LOGGING_ENABLED
...

This sliece of code containd definitios for the Log_Writefunctions implemented above.

results matching ""

    No results matching ""